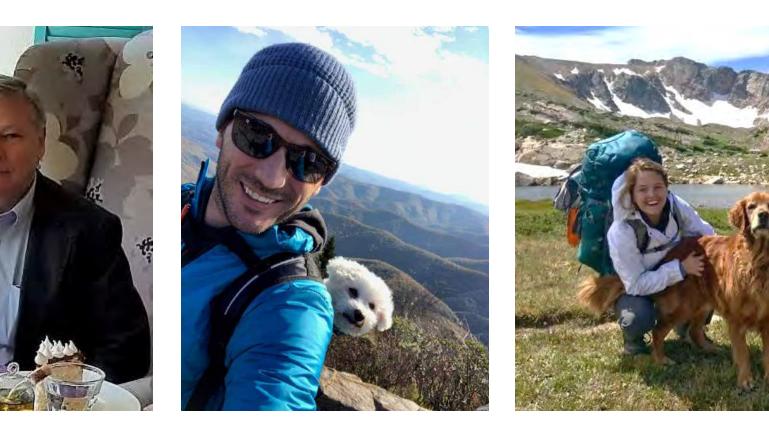


MBBR Design Considerations and Case Studies

Inside this presentation

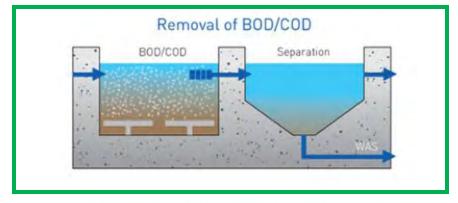
Basic MBBR Design


- What is MBBR and its Benefits?
- MBBR Design 101 (Domestic)
- Biofilm Carrier Selection

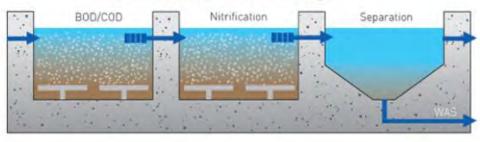
Industrial Considerations

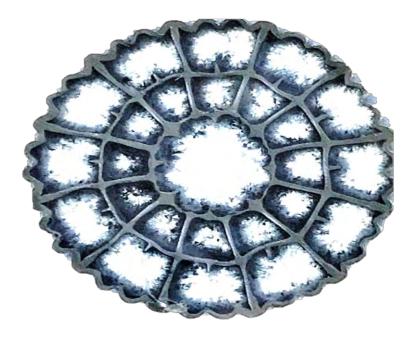
- Slaughter-House
- Food and Beverage
- Pulp and Paper
- Fishery

SSI PROCESS EAM

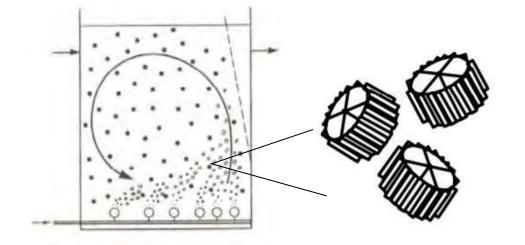

BOB FREUDENBERG DIRECTOR JASON BOWMAN MANAGER KELSEY BENNETT PROCESS ENGINEER

Bob@SSIAeration.com


Jason@SSIAeration.com


n.com Kelsey@SSIAeration.com

MBBR 101



Removal of BOD/COD + Nitrogen

MBBR History

"Father of MBBR" Professor Hallvard Odegaard Norway, late 1980's

Historical Design Coarse Bubble More Conservative HRTs Simple, low surface area media

Innovation in MBBR

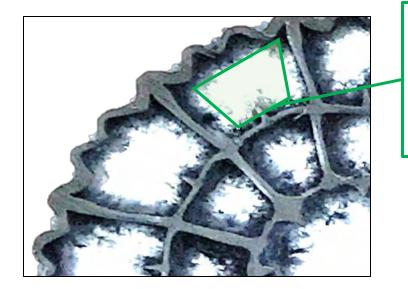
Advancements in Fine Bubble Technology

Mixing Patterns, Efficiency, and Maintenance

Advancements in Media Development

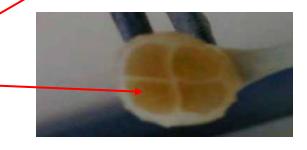
Optimizing materials and geometries

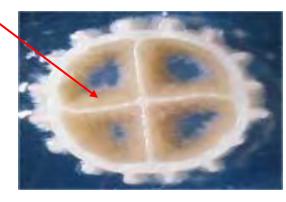
Continuous Research and Advancements in Design


Mapping DNA, exploring EPS, and simultaneous treatment with

biological layering

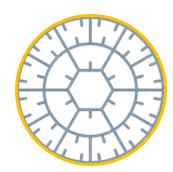
So what is a healthy MBBR system?


High % open area Optimized diffusion area Optimal biofilm control Consistent and stable treatment Optimal Diffusion ~ 200 microns



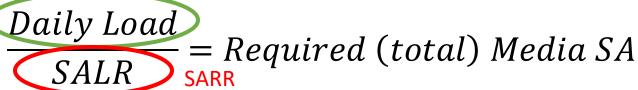
Loss of internal diffusion Lower efficiency Reduced organic removal rate

Uniform Distribution throughout Tank



How do we design an MBBR System?

- 1. Define the Problem/Project
 - Understand the specific water chemistry
 - Ensure the system will be a fit for biological treatment
- 2. Find the Volume of Media Needed
 - Based on the treatment requirement
- 3. Design the Reactor Configuration
 - Media must be 30%-65% fill
 - Aeration System
 - Media Retention Screens


How do we design an MBBR System?

Protected Surface Area (PSA) Area for Biological Growth

From Influent Data into MBBR

PROJECT SPECIFIC

Primary Requirements

- Surface Area Loading Rate*
- Surface Area Reduction Rate*
- Constituent Loading into MBBR
- Effective Surface Area
- Required Treatment (% removal)

*Requires experience and project understanding

= Total Volume of Media

Required Media SA Protected Surface Area

EFFECTIVE SURFACE AREA From Media Selection

What is SALR?

Surface Area Loading Rate (SALR) is a measurement of the daily load across the total protected surface area

$$SALR\left(\frac{g}{m^2}\right) = rac{Daily Load\left(\frac{g}{day}\right)}{Total PSA\left(m^2\right)}$$

- Empirically derived over 30 years
 - Continuing development
- Impacted by the following factors:
 - Media Geometry
 - Biofilm Thickness
 - Predation
 - Diffusion (through the Media)
 - Biodegradability
 - Toxicity
 - Alkalinity and pH
 - Suspended Solids and FOG
 - Temperature

Does SALR actually indicate treatment?

To capture the treatment efficiency, we use Surface Area **Reduction Rate** (SARR)

 $SARR\left(\frac{g}{m^2}\right) = \frac{Daily \ Reduction \left(\frac{g}{day}\right)}{Total \ PSA \left(m^2\right)}$

Typical (domestic) treatment efficiency is ~90%

Therefore, SARR = ~90% * SALR

As SALR exceeds ~20 g BOD/m², efficiency drops to 70-80%

Technically, we are only reducing the *soluble* fraction of BOD. Particulate BOD is normally separated in primary or clarifies. It requires longer assimilation.

How can we estimate SALR?

• <u>No universal</u> equation for SALR

- SALR inversely correlated to % removal
 - Usually ~90% removal
- SALR directly correlated to temperature
- SARR inversely correlated to SALR

• Graph SALRs vs. Temperature

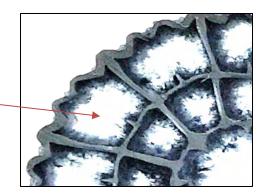
- Logarithmic correlation
- Different industries
- Different medias

Extrapolating an SALR/SARR for a K1 media to a High SA Media...

SARR

How much ca treat with 1 m³ i

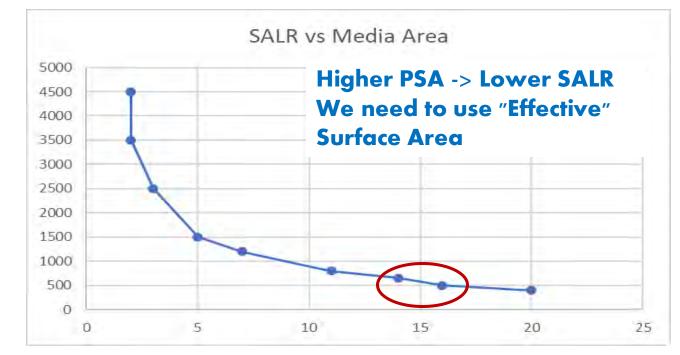
Pay Careful Attention to Studies and Equations. Which Type of Media and Wastewater are they Based on?


How far can you go with 1 tank of gas?

...Is like extrapolating an MPG for a Honda Fit to an Old Jeep

MEDIA IS ENGINEERED, NOT PLASTIC

Proper MBBR Media Design is Imperative


- High % open area
- Optimized diffusion area
- Optimal biofilm control
- Consistent and stable treatment

Examples of:

Loss of internal diffusion Lower efficiency Reduced organic removal rate

Selecting the Right Media Material Properties

Each Media is DIFFERENT

Hydrodynamics

How the media moves and distributes

Loading Rates

2 – 20 g BOD/m2 (10x difference)

Mixing Energy

5 – 25 Sm3/hour-m2 (5x difference) Strength and Longevity Surface Area Is <u>Not</u> The Most Important Characteristic

Modeling only accounts for SA

"Space Race" for high SA

Not Enough Media

Failed MBBRs

Selecting the Right Media Material Properties

HIGH QUALITY VIRGIN HDPE

- Wall Thickness
- Geometry
- "Effective" surface area
- Specific Gravity
- Wet Time
- Mixing
- Strength (property of HDPE material)

It takes a fine balance of these objectives to create a good media

How can we estimate SALR for waters other than domestic?

Research, experience, and a holistic understanding of the wastewater system

Remember all those factors that impact SALR?

We need to consider <u>all</u> of those for each project

Negative Impacts on SALR

- High COD:BOD (>2:1)
- Low Biodegradability
- High TSS:BOD (>1.5:1)
- High FOG (>20mg/L)
- Toxicity
- Low Alkalinity
- Too high or too low pH (6.5-8)

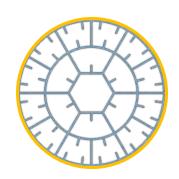
Holistic Design It all impacts the MBBR

Pretreatment!

Fraction of insoluble/soluble BOD directly impacts primary and tertiary treatment

FOG, suspended solids, etc. can all impact SALR.

Example: investing in advanced screening could reduce MBBR by ~30%


Primary Treatment Screening Grit Removal Oil/Water Separation Primary Clarifier Equalization

Secondary Treatment MBBR Clarifier

Tertiary Treatment Filtration UF/RO Disinfection

Review

Effective Surface Area (ESA) **Area for Biological Growth**

BOD Reduced in MBBR

Daily Load = Required (total) Media SA SARR = Efficiency * SALR

Primary Requirements

- Surface Area Loading Rate*
- Surface Area Reduction Rate*
- Constituent Loading into MBBR
- Effective Surface Area
- Required Treatment (% removal)

*Requires experience and project understanding

Required Media SA

= Total Volume of Media

Effective Surface Area

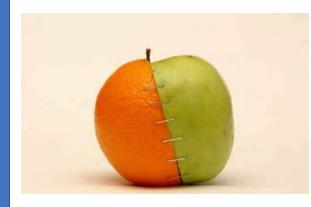
SARR

From Media Selection

PROJECT SPECIFIC

Why can't we use the equivalent method?

Conventional activated sludge (CAS) systems rely on MLSS (suspended phase biology)


Predicting the "mass of biology on the media" is too inaccurate

Models are inaccurate

- Models assume more biomass = more treatment
- In MBBR, thicker biomass ≠ more treatment

Optimal Diffusion in Aerated MBBR is 200 microns so going to 1mm of biomass does not directly correlate to "more treatment"

These are DIFFERENT systems ...

MBBR Aeration Design Diffuser Selection

- 2mm PTFE Discs with full floor coverage
- Greater resistance to foul and creep
- "Medium bubble" for more mixing energy
- Better turn up/down flexibility
- ~30% energy savings compared to coarse bubble

